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Abstract

The di�erences between subcritical liquid drop and supercritical ¯uid drop behavior are shown to be a
direct consequence of the length scales near the ¯uid drop boundary. Under subcritical, evaporative high
emission rate conditions, a ®lm layer is present in the inner part of the drop surface which contributes
to the unique determination of the boundary conditions; it is this ®lm layer in conjunction with
evaporation which gives to the solution its convective±di�usive character. In contrast, under
supercritical conditions the boundary conditions contain a degree of arbitrariness due to the absence of
a physical surface, and the solution has then a purely di�usive character. Results from simulations of a
free ¯uid drop under no-gravity conditions are compared to microgravity experimental data from
suspended, large drop experiments at high, low and intermediary temperatures and in a range of
pressures encompassing the sub- and supercritical regime. Despite the di�erence between the conditions
of the simulations and the experiments, the time rate of variation of the drop diameter square is
remarkably well predicted in the linear curve regime. Consistent with the optical measurements, in the
simulations the drop diameter is determined from the location of the maximum density gradient.
Detailed time-wise comparisons between simulations and data show that this location is very well
predicted at 0.1 MPa. As the pressure increases, the data and simulations agreement becomes good to
fair, and the possible reasons for this discrepancy are discussed. Simulations are further conducted for a
small drop, such as that encountered in practical applications, over a wide range of speci®ed, constant
far ®eld pressures. Additionally, a transient pressure simulation crossing the critical point is also
conducted. Results from these simulations are analyzed and major di�erences between the sub- and
supercritical behavior are explained. In particular, it is shown that the classical calculation of the Lewis
number gives erroneous results at supercritical conditions, and that an e�ective Lewis number previously
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1. Introduction

The behavior of ¯uids under a wide range of pressures is of both fundamental and great
practical interest. Oil in underground reservoirs is naturally stored at very high pressures, and
as it is extracted it eventually reaches the atmospheric pressure. Two examples of practical
situations in which ¯uids experience large changes in pressures in a very short time are Diesel
engines and aircraft engine combustion chambers. In both cases the energy that powers the
engine is produced by the burning of atomized hydrocarbons with air; the word `atomized' is
used here in a very general sense to mean the disintegration of a ¯uid without reference to any
particular con®guration or mechanism. According to well-established thermodynamic theory
(Hirshfelder et al., 1964; Prausnitz et al., 1986; American Petroleum Institute, 1992), once
either the reduced pressure �pr � p=pc� or the reduced temperature �Tr � T=Tc� is larger than
unity (the subscript `c' denotes `critical'), in the �p, V, T� system of coordinates there is no
longer the possibility of a two-phase region, and instead there is only a single-phase region
(Hirshfelder et al., 1964). Here p, T and V are the temperature, pressure and volume,
respectively, and the subscript `r' denotes `reduced'. The general term for the substance is ¯uid
(neither a gas nor a liquid) and it is in a supercritical state. Considering that the critical
pressure of most fuel hydrocarbons used in these engines is in the range of 1.5±3 MPa, and the
fact that the maximum pressure attained in the combustion chamber is about 6 MPa, it is clear
that the fuel will experience both subcritical and supercritical conditions during the operation
of the engine.
Despite the fact that supercritical ¯uids occur both in nature and in industrial situations, the

fundamentals of their behavior is not well understood because supercritical ¯uids combine the
characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are
several speci®c reasons for the lack of understanding: First, data from (mostly optical)
measurements can be very misleading because regions of high density thus observed are
frequently identi®ed with liquids. A common misconception is that if in an experiment one can
optically identify `drops' and `ligaments', the observed ¯uid must be in a liquid state. This
inference is incorrect because in fact optical measurements detect any large change (i.e.
gradients) in density. Thus, the density ratio may be well below O(103) that characterizes its
liquid/gas value, but the measurement will still identify a change in the index of refraction
providing that the change is sudden (steep gradients). As shown by simulations of supercritical
¯uids of Harstad and Bellan (1998) under certain conditions the density gradients may remain
large during the supercritical binary ¯uids mixing, thus making them optically identi®able.
Therefore, there is no inconsistency between the optical observation of high density regions
and the ¯uids being in a supercritical state. A second misconception is that because a ¯uid has
a liquid-like density, it is appropriate to model it as a liquid. However, such ¯uids may have
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liquid-like densities while their transport properties di�er from those of a liquid. Table 1 shows
the percent ratio of the thermal conductivity of ¯uid propane compared to that of the liquid at
the same temperature. The calculations were performed using the plotted values of Reid et al.
(1987) (Fig. 10-5). Since propane has a relatively large pc (42.5 bar), the values of pr are rather
low compared to the corresponding ones for hexadecane (a neat fuel representative of Diesel
fuel) at the same p because pc of hexadecane is much lower (14.1 bar). Following the procedure
for calculating conductivities at large pr's knowing the conductivity at the same Tr but at a
lower pr (American Petroleum Institute, 1992, procedure 12A4.1), one ®nds that the
discrepancy increases with increasing pr and Tr, that is with increased pressure and ¯uid
heating. Therefore, although a ¯uid under supercritical conditions may have a liquid-like
density, it is not appropriate to model it as a liquid not only because the equation of state will
be incorrect (and thus the density change in response to the ¯uid heating will be di�erent from
that of the liquid), but also because a ¯uid heats up di�erently from a liquid. In fact, it is not
only the thermal conductivity which has a di�erent value, but most important, the transport
matrix of a general ¯uid has additional terms coupling the species and energy equations
through temperature and molar fraction gradients, respectively. Harstad and Bellan (1999)
have shown that as a result of these additional terms, under supercritical conditions the
e�ective length scales for heat and mass di�usion increase and decrease, respectively, in
comparison with those at subcritical conditions. This indicates that the mathematical solution
of the system of equations might have di�erent characteristics in the subcritical and
supercritical regimes.
Studies of drop behavior over a wide range of pressures were performed in the past (Yang et

al., 1994; Delplanque and Sirignano, 1993; Haldenwang et al., 1996, and the review of Givler
and Abraham, 1996), however, none of these studies identi®ed the crucial di�erences between
the subcritical and supercritical behavior. In fact, in two of these studies (Yang et al., 1994;
Haldenwang et al., 1996), it was found that the subcritical and supercritical behavior is similar
as the drop diameter decreased according to the classical d 2-law (Williams, 1965) over a wide
range of pressures and drop diameters, d.
The present study is devoted to the exploration of di�erences in ¯uid-behavior characteristics

under subcritical and supercritical conditions in the particular case of ¯uid drops; the ¯uid
drop case was selected because of the availability of experimental observations for model
validation. We show in particular that the d 2-law is obeyed only in the subcritical regime.
Section 2 presents a brief summary of our model (Harstad and Bellan, 1998) based upon
¯uctuation±dissipation theory; more details of our model can be found in Harstad and Bellan

Table 1

Percent error in the calculation of thermal conductivity of propane if calculated as for a liquid instead of a ¯uid

pr�p� Tr�T �

0.81 (300 K) 0.86 (320 K) 0.92 (340 K)

2.35 (100 bar) 10% 13.5% 13.5%

7.06 (300 bar) 25% 32% 35%
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(1998, 1999). In Section 3, we expand our previous supercritical calculation (Harstad and
Bellan, 1998) of the ¯uid drop radius to include the subcritical regime; in particular, we show
that there is a major di�erence between the subcritical and supercritical behavior which is
intimately related to the length scales near the ¯uid drop boundary. Results from simulations
are compared in Section 4 to data for heptane drops in nitrogen at high, intermediate and low
temperatures and in the 0.1±5 MPa pressure range, and the theory is validated. The
comparison with high temperature experimental data allows us to ®rst determine the value of
the assumed constant thermal di�usion factor; once this is done, the value is con®rmed at
intermediate temperatures by comparing with the data, and further model validations are
conducted with this value at low temperatures. We further present numerical predictions for
small drop sizes in high temperature surroundings (which are of practical interest in the
combustion chambers of propulsion systems and for which detailed data for validation do not
exist) at both constant and varying pressure crossing the critical point of the ¯uid, and o�er
comments regarding the di�culties of performing calculations crossing the critical point.
Finally, Section 5 is devoted to conclusions.

2. Model equations

The con®guration studied is that of a single spherical drop in a medium with speci®ed far
®eld conditions. These far ®eld values are identi®ed by the subscript `e' and the location of the
far ®eld boundary, Re�t�, where R is a speci®ed radial location, is calculated in a Lagrangian
way to be that of null mass ¯ux.
The conservation equations are based upon Keizer's (Keizer, 1987) ¯uctuation±dissipation

theory which has the distinct advantage of formally accounting for non-equilibrium processes.
This formalism therefore leads to the most general ¯uid equations where the partial molar
¯uxes, ~Ji, for species i, and the heat ¯ux, ~q, are related to thermodynamic quantities as follows:

~Ji � Liqrbÿ
XN
j

Lijr
ÿ
bmj

�
, ~q � Lqqrbÿ

XN
j

Lqjr
ÿ
bmj

� �1�

where b � 1=�RuT � and N is the total number of species; the expression in Eq. (1) is called the
Irwing±Kirkwood (IK) form (Sarman and Evans, 1992) of the heat ¯ux. Here Ru is the
universal gas constant, mj is the chemical potential of species j, Lij are the Fick's di�usion
elements, Lqq is the Fourier thermal di�usion element, Liq are the Soret di�usion, Lqj are the
Dufour di�usion elements, and the Onsager relations state that Lij � Lji and Liq � Lqi:
Additionally, conservation of ¯uxes and mass in the system imply that

PN
i mi

~Ji � ~0 andPN
i Lijmi � 0 for j 2 �1, N � and j � q, where mi is the molar mass of species i.
Using the thermodynamic relationship

d
ÿ
bmj

� � b
ÿ
vj dpÿ hj dln T

��  XNÿ1
1

aDji
dXi

!
=Xj �2�

where
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hj � @h

@Xj
� mj ÿ T

@mj
@T

�3�

vj � @v

@Xj
� @ mj

@p
�4�

aDij
� bXi

@mi
@Xj
� @Xi

@Xj
� Xi

@ ln gi
@Xj

�5�

one can calculate ~Ji and ~q from Eqs. (1) and (2), providing that the elements, Lij, can be
calculated. Here vj, hj, Xj, and gi are the partial molar volume, enthalpy, molar fraction and
activity coe�cient, respectively, while v and h are the total molar volume and enthalpy,
respectively. The coe�cients aDij

are called mass di�usion factors, and gi � ji=j
o
i where j is

the fugacity coe�cient and the superscript `o' denotes the pure �Xi � 1� limit.
The transport matrix has the advantage of allowing a natural de®nition of the transport

coe�cients therefore relating its elements to measurable/calculable quantities. Thus, a thermal
conductivity is de®ned by lIK � bLqq=T (subscript `IK' designates quantities related to this
form of the heat ¯ux). However, lIK does not correspond to the kinetic theory (subscript KT)
thermal conductivity because, in particular, it is not the only coe�cient of rT in ~q; the
signi®cance of this observation is discussed below. Also related to the transport matrix, two
transport coe�cient matrices may be de®ned: a symmetric di�usion coe�cient matrix, Dm,ij,
and an antisymmetric thermal di�usion factor matrix, aIK,ij, through

Lij � ÿDm,ijnYiYj, i6�j �6�

bLiq � Xi

X
j6�i

aIK,ijnYjDm,ij �7�

with the consequence that

Lii � Xi

X
j 6�i

�
mj

m

�
nYjDm,ij: �8�

Here n and Yj are the molar density and species mass fraction, while m is the average molar
mass of the mixture. Thus, the knowledge of lIK and the Dm,ij and aIK,ij matrices allows the
calculation of the transport matrix.
In terms of these new matrices, the general form of the molar ¯uxes for i 2 �1, N � is

~Ji � ÿn
"
Xi

ÿ
DT,irln T�Dp,irln p

��XNÿ1
k�1

DikrXk

#
�9�

where
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DT,i �
X
j

Yj

"
aIK,ij ÿ b

�
mimj

m

��
hi
mi
ÿ hj

mj

�#
Dm,ij �10�

Dp,i � bp
X
j

Yj

�
mimj

m

��
vi
mi
ÿ vj

mj

�
Dm,ij �11�

Dik �
X
j

Dm,ij

�
mj

m

�ÿ
YjaDik

ÿ YiaDjk

� �12�

and the form of the heat ¯ux is

~q � ÿl 0IKrTÿ nRuT

 
Dqprln p�

X
k

DqkrXk

!
�13�

where l 0IK is another form of the IK thermal conductivity

l 0IK � lIK ÿ
�
r
T

�X
i>j

YiYj

�
hi
mi
ÿ hj

mj

�
aIK,ijDm,ij �14�

Dqp � bmp
X
i>j

YiYj

�
vi
mi
ÿ vj

mj

�
aIK,ijDm,ij �15�

Dqk �
X
i>j

ÿ
YjaDik

ÿ YiaDjk

�
aIK,ijDm,ij: �16�

Note that unlike lIK, l
0
IK is the only coe�cient of rT in the heat ¯ux ~q:

2.1. Conservation equations for a multicomponent mixture

In spherical geometry the conservation equations are:

. continuity:

@r
@t
� 1

r2
@
ÿ
r2ru

�
@r

� 0 �17�

where r is the mass density, u is the radial velocity, t is the time and r is the radial
coordinate.

. momentum conservation:

@�ru�
@t
� 1

r2
@
ÿ
r2ruu

�
@r

� @p
@r
� @trr

@r
� 3trr

r
�18�

where trr � �4=3�Z�@u=@rÿ u=r� is the stress tensor and Z is the mixture viscosity.
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. species conservation:

r
DYi

Dt
� ÿmir � ~Ji �19�

where D=Dt � @=@t� u�@=@r�:
. energy equation:

nCp
DT

Dt
� avT

Dp

Dt
ÿ r � ~q� Fv �

XN
j

hjr � ~Jj �20�

where Cp is the mixture molar heat capacity at constant pressure, av � ��@v=@T �p,Xi
�=v is the

thermal expansion ratio, and Fv��4=3�Z�@u=@rÿ u=r�2 is the viscous dissipation.

2.2. Relationship between kinetic theory and measured values of l and aIK, ij for multicomponent
mixtures

As mentioned above, lIK in Eq. (1) might not be the quantity measured in experiments
determining thermal conductivities because it is not the coe�cient of the temperature gradient
in the heat ¯ux expression; this expression has Soret term contributions from the molar ¯ux
(the cross terms) that also contain temperature gradients. Another form of the heat ¯ux is
given by the Bearman±Kirkwood (BK) expression (Sarman and Evans, 1992)

~q
00 � ~qÿ

X
j

hj ~Jj � L 00qqrbÿ
XN
j

L 00qjr
ÿ
bmj

� � ~Lqqrbÿ
XN
j

L 00qj
�rÿbmj�ÿ hjrb

� �21�

where according to Eq. (2)

rÿbmj�ÿ hjrb � bvjrp�
 X

i

aDji
rXi

!
=Xj: �22�

If one de®nes a BK thermal conductivity by lBK � b ~Lqq=T, this is now the only coe�cient of
the temperature gradient in the BK form of the heat ¯ux, Eq. (21). In the same manner as
aIK,ij, one may de®ne BK thermal di�usion factors aBK,ij by

bL 00iq � Xi

X
j6�i

aBK,ijnYjDm,ij: �23�

Tedious but straightforward calculations show that for a multicomponent system

lBK � l 0IK ÿ
�
r
T

�X
i>j

�
hi
mi
ÿ hj

mj

�
YiYjaBK,ijDm,ij: �24�

but neither lBK nor l 0IK coincide with the kinetic theory thermal conductivity in the low
pressure limit, and therefore cannot be considered to be an appropriate de®nition of the
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thermal conductivity. However, if one de®nes a thermal conductivity, l, through the
relationship

l � l 0IK ÿ Run
X
i>j

XiXjaBK,ijaIK,ijDm,ij, �25�

then l has the distinctive property that in the low pressure limit it consistently becomes lKT

(i.e. limp40l � lKT; see Chapman and Cowling, 1970); it also has the property that non-
negative entropy production requires lr0: Moreover, it can be shown that

aBK,ij � aIK,ij ÿ ah,ij �26�
where

ah,ij �
�
mimj

m

��
hi
mi
ÿ hj

mj

�
=�RuT�, �27�

and that limp40�aBK,ij � � aKT,ij: Note that crossterms vary in ~q as aIK,ij, and those in ~Ji and ~q
00

vary as aBK,ij:
For a pure substance, lBK � lIK � l 0IK � l �� lKT�; however, this is no longer the case for

mixtures. Therefore, particular care is taken in the present simulations to insure that the
available data for individual substances is used to calculate l according to the well established
mixing rules of Teja and Rice explained in Reid et al. (1987).
Thermal di�usion factors have been calculated by Vogelsang and Hoheisel (1988) and

Sarman and Evans (1992) using Molecular Dynamics theory; these calculations are very
computationally-intensive. Thermal di�usion ratios for ternary mixtures are rarely reported, an
exception being Singh et al. (1983) for a Ne±Ar±Kr gaseous mixture. Measurements of thermal
di�usion factors have been made either in thermodi�usion cells (Bert and Dupuy-Philon, 1997;
Li et al., 1994) or in thermogravitational columns (Bou-Ali et al., 1998; Ecenarro et al., 1990,
1993). Each of these systems presents some di�culties for performing the measurements. For
example, thermal di�usion cells measurements may be a�ected by convective e�ects or by the
long time needed to achieve uniformity in the two cells, whereas thermogravitational
measurements are a�ected by parasitic convective e�ects and nonuniformities in the wall
temperature. Generally, measured values of either aBK,ij or aIK,ij are very scarce (see tabulated
values in Bird et al., 1960; Chapman and Cowling, 1970), and although some data exists near
the critical point (Ecenarro et al., 1993), we are not aware of extensive comprehensive data at
supercritical conditions. Therefore, the value of aBK,ij or aIK,ij must be determined from
comparisons with experimental data (see below).
For a binary mixture Dm,12 is the binary di�usion coe�cient Dm and

~q � ÿ�aIKRuT� ~Jb ÿ l 0IKrT �28�

~q
00 � ÿ�aBKRuT� ~Jb ÿ lBKrT �29�

~J1 � ÿ�m2=m�
ÿ
~Jb � X1X2aBKnDmrln T

�
�30�
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~Jb � nDm

�
aDrX1 � b�m1m2X1X2=m��v1=m1 ÿ v2=m2�rp

� �31�

lBK � l� X1X2�aBK�2RunDm �32�

l 0IK � l� X1X2aIKaBKRunDm �33�

aBK � aIK ÿ ah �34�
and since ah may be either positive or negative and have a relatively large magnitude (e.g. the
LOx±H2 system in Harstad and Bellan, 1998), aBK and aIK may have very di�erent values.
These considerations show that it is essential to understand the intricacies of the transport

matrix in order to enable quantitative calculations that can be validated by experimental
observations. Some of the results presented below investigate these intricacies even further by
exploring the determination of aBK and aIK from existing measurements over a wide range of
�p, T� in conjunction with model validation.

3. Boundary conditions for a binary mixture

The detailed boundary conditions at r � Rd, where Rd is the drop radius, have been derived
in Harstad and Bellan (1998) and are summarized here only. The subscripts `b' and `d' indicate
the drop boundary and drop related quantities, respectively, and the superscripts `L' and `G'
refer to the initial heptane and nitrogen side of the drop boundary, respectively.

. mass balance:

rG
b

�
uG

b ÿ
dRd

dt

�
� rL

b

�
uL

b ÿ
dRd

dt

�
�35�

. relationship between Rd and the emission ¯ux Fems: By de®nition of the mass emission ¯ux,
Fems � ÿ�1=Ad�dM=dt, where M is the drop mass and Ad is the drop boundary area, which is
consistent with

Fems � rL
b

ÿ
uL

b ÿ dRd=dt
�
: �36�

. heat balance:

qG
r, b ÿ qL

r, b � ÿ
�
hG
2 �

ÿ
hG
1 ÿ hG

2

�
X G

1b

mG
ÿ hL

2 �
ÿ
hL
1 ÿ hL

2

�
X L

1b

mL

�
Fems �37�

where hG
j �hj�pb, Tb, X

G
1b�, hL

j �hj�pb, Tb, X
L
1b� and hG

1 ÿ hL
1 is the molar heat of evaporation

whereas hG
2 ÿ hL

2 is the heat of solution. The subscript `r' stands for radial component.
. balance of species 1 (chosen to be heptane) ¯ux:

m1

�
J G
1r,b ÿ J L

1r,b

�
� ÿY L

1b ÿ Y G
1b

�
Fems �38�
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. non-equilibrium evaporation law. This is obtained by calculating the ¯uxes at the molecular
level to yield

Fems �
X
j�1, 2

h
aajmjuTj

�
nG
j,equil ÿ nG

j

�i
�39�

where nG
j, equil's are calculated from thermodynamic relationships (Prausnitz et al., 1986), uTj

is the mean molecular velocity crossing a plane in one direction, and aaj are accommodation
coe�cients. The expressions for nG

j,equil's are

nG
j,equil �

rG
b X

L
jbj

L
j,b

jG
j,bm

G
: �40�

Additional equations at r � Rd are the momentum and the mixture equation of state which is
used twice (once on each side of the boundary). Since uL

b is calculated by integrating the
continuity equation inside the drop, there is a total of eight equations and nine unknowns: uG

b ,
X L

1b, X G
1b, rL

b , rG
b , Rd, Tb, pb and Fems; a ninth independent relationship exists only under

subcritical conditions, as discussed below.
The indeterminacy of the boundary conditions for a ¯uid drop under supercritical conditions

has already been discussed by Harstad and Bellan (1998). This is physically understandable
since there is no true surface, and thus there is an arbitrariness as to the choice of the
boundary to follow. At least three choices are reasonable: One may follow the pure ¯uid
boundary as was done by Harstad and Bellan (1998). Another possibility is to follow the initial
boundary separating the two ¯uids, this being the choice in the present calculation. The third
possibility is to follow the point of maximum density gradient; although this is not the present
choice, the point of maximum density gradient is calculated here aÁ posteriori to indicate the
location of the optically identi®ed ¯uid drop. In contrast, under subcritical conditions the
boundary to follow is the drop surface and the problem is fully determined.
There are other important consequences of the existence or lack of a surface at r � Rd: For

example, under strong evaporative conditions a mass fraction `®lm' layer exists inside the drop
(Law and Law, 1982) and the thickness of this layer, dY � Drÿ where Drÿ is the distance from
the surface to the ®rst grid point inside the drop. A detailed analysis (Harstad and Bellan,
1999) shows that an e�ective mass di�usivity Deff can be de®ned as shown below, with the
consequence that the ®lm layer exists when Fems � rDeff=Drÿ: The value of Deff and that of an
equivalent leff were calculated under the quasi-steady assumption in Harstad and Bellan (1999)
by ®nding a set of two linear combinations of T and Y1 for which Eqs. (19) and (20) can be
approximately diagonalized. The radial ¯uxes are

ÿJ1r � AJ
@Y1

@r
� BJ

@T

@r
� CJ

@p 0

@r

ÿqr � Aq
@T

@r
� Cq

@Y1

@r
� Bq

@p 0

@r
�41�

where for a binary mixture the coe�cients are
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AJ � �m=m1�nDmaD �42�

BJ � �m2=m�nDmX1X2�aIK ÿ ah�=T �43�

CJ � �m2=m�nDm�m1m2X1X2=m��v1=m1 ÿ v2=m2�=�RuT� �44�

Aq � l� �aIK ÿ ah�aIKRunDmX1X2 �45�

Cq �
h
m2=�m1m2�

i
nDmaDaIKRuT �46�

Bq � nDmaIK�m1m2X1X2=m��v1=m1 ÿ v2=m2� �47�
where according to the Gibbs±Duhem relationship aD�aD11�aD22�ÿaD12�ÿaD21 and

ah � �m1m2=m��h1=m1 ÿ h2=m2�=�RuT�: �48�
Once the equations for T and Y1 are diagonalized, the characteristic length scales for
di�usional transport of the new set of variables are apparent, and this allows the de®nition of
Deff and leff

rDeff � m1AJ ÿ oTmC 0q=Cp �49�

leff � A 0q ÿ oY�m1=m�CpBJ �50�

where

A 0q � Aq ÿm1

�
h1
m1
ÿ h2

m2

�
BJ and C 0q � Cq ÿm1

�
h1
m1
ÿ h2

m2

�
AJ �51�

with

oT � sm1CpBJ=m and oY � ÿsC 0q �52�

where s is the positive root of the second-order algebraic equation

�m1=m�CpBJC
0
qs

2 �
h
A 0q ÿ �m1=m�CpAJ

i
sÿ 1 � 0 �53�

the other root being unphysical as it leads to singular behavior. These equations also allow the
calculation of an e�ective Lewis number, Leeff � leff=�nCpDeff� once the values of the
dependent variables are known. The quasi-steady assumption does not remove the generality of
the estimate since its essence is that of a characteristic length. One of the most important
consequences of the mass fraction ®lm layer existence is the direct relationship that exists
between Yi�Rd ÿ e� and Yi�Rd � e�, where eOmax�dY, dT�; it is this relationship which provides
the needed additional equation to fully determine the solution at the drop surface. This
relationship can be formulated by considering the di�erence DY L

1 � Y L
1 �Rdÿ e� ÿ Y L

1 �RdÿDrÿ�
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where Y L
1 �Rd ÿ Drÿ� represents the computational grid center value at the ®rst adjacent

position to the ®lm layer inside the drop such that Drÿ � dY: Similarly, one may de®ne DT L �
T L�Rd ÿ e� ÿ T L�Rd ÿ Drÿ�: The variable xj � jL

j =j
G
j quanti®es the Yj jump across the drop

surface and can be calculated from the state equation. For example, under strict equilibrium
evaporation (i.e. Fems � 0� conditions, xj � 1: For ®nite Fems and for a binary mixture, its ratio
to a reference state Fref�x1, x2� can be de®ned by

Fems � EFFref �54�
where

Fref � B1�xav ÿ x1� �B2�x2 ÿ xav� �55�

Bj � aajmjuTjn
G, j � 1, 2 �56�

X L
1 �Rd ÿ e� � �x2 ÿ 1�

�x2 ÿ x1�
ÿ EF and X G

1 �Rd � e� � x1�x2 ÿ 1�
�x2 ÿ x1�

ÿ xavEF �57�

X L
2 �Rd ÿ e� � �1ÿ x1�

�x2 ÿ x1�
� EF and X G

2 �Rd � e� � x2�1ÿ x1�
�x2 ÿ x1�

� xavEF �58�

and consistently Fref�1, 1� � 0: A detailed analysis of the ®lm layer yields then

xav �
B2x2Y L

1 �Rd ÿ Drÿ� �B1x1Y L
2 �Rd ÿ Drÿ�

B2Y
L
1 �Rd ÿ Drÿ� �B1Y

L
2 �Rd ÿ Drÿ� �59�

which provides the additional relationship between X L
1 �Rd ÿ e� and X G

1 �Rd � e� and allows
closure of the system of equations at the drop boundary.
Since under supercritical conditions the concept of latent heat, and therefore of evaporation,

is not applicable ��hG
1 ÿ hL

1 �40 as the critical point is approached], the above analysis does not
hold. However, the ®lm layer computational approach is still necessary if the grid Peclet
number PegridrO�1� in order to insure that all scales are resolved. Therefore, the formalism of
the ®lm layer is retained for computational purposes even under supercritical conditions,
although the layer no longer exists physically. This is accomplished by a generalization of the
layer equations so that the limit Fems40 yields the form of the equations without the layer.
Essentially, the solution in the supercritical regime has a di�usive character, whereas in the
subcritical regime it has a di�usive±convective character where the convective part is
introduced by the ®lm layer and the evaporation.
At Re�t� the dependent variables are speci®ed.

4. Numerical method

The primitive variables are p, T, Xj (or Yj� and u, however, the equations are analytically
manipulated to facilitate calculations. For convenience, the density derivatives in Eq. (17) are
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replaced using the relationship

dln r � ÿav dT� kT dp�
XN
1

ÿ
mj=mÿ vj=v

�
dXj �60�

where kT�ÿ�1=v��@v=@p�T,Xj
is the isothermal compressibility. Combining Eqs. (60), (17), (19)

and (20) yields

r � ~u � ÿDln r
Dt
� Su �61�

where

Su � av
DT

Dt
ÿ kT

Dp

Dt
� r

X
j

vj
mj

DYj

Dt
� ~ku � ~u� nu �62�

with

~ku � avrTÿ kTrp 0 � r
X
j

vj
mj
rYj �63�

nu � av
dT

dt
ÿ kT

dpe

dt
� r

X
j

vj
mj

dYj

dt
ÿ ~ku � d~rgrid

dt
�64�

where pe is the imposed thermodynamic pressure and ~rgrid is the grid vector. For implicit
calculations of ~u, numerical accuracy requires either a grid size Dr such that jkuDrj � 1 or
~u4d~rgrid=dt: For a very large gradient region, this is resolved by a semi-implicit mixing of ~ku

with its last step value. The quantities r, av, kT and vj are calculated from the state equation.
The equations are discretized in a ®nite di�erence form, and to insure computational

stability we use variable upwind di�erencing of the convection terms in regions of large
gradients. The degree of upwinding is based on matching the ®lm layer results. In the quasi-
steady limit, the convection±di�usion equations feature a local spatial variation that depends
exponentially on the local computational cell Pegrid (this is the basis for the ®lm layer
equations). To be consistent with this limit, the di�erence equations three-point spatial stencil
for the convective terms have weights (i.e., degree of upwinding) proportional to exponents of
signed Pegrid: For small Peclet numbers, this gives a central di�erence; for large Peclet numbers,
the full upwind di�erence is approached. To insure computational accuracy, the r coordinate is
given by a time dependent grid, and due to expected sharp gradients the grid spacing is
smallest near the drop boundary. The grid motion is determined by ®xing one boundary at the
initial interface, and by choosing the outermost boundary, Re�t�, to follow the ¯uid motion
(Lagrangian far ®eld boundary); dRe=dt � u�r � Re�: Relative to the local grid motion, the
e�ective convection velocity is thus �uÿ drgrid=dt�: The boundary conditions are satis®ed at the
drop center (null gradients) and at the far ®eld boundary (speci®ed values of the dependent
variables). The thermodynamic variables are calculated at grid cell centers, whereas the velocity
and ¯uxes are calculated at grid cell boundaries (Roache, 1976).
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Since Ma� 1, the pressure is calculated as p�r, t� � pe�t� � p 0�r, t� where pe�t� is speci®ed
and p 0�r, t� is a small perturbation calculated from the momentum equation. At any time step,
the solution is found by iterating in two sequential pairs. The ®rst pair is u and p 0 representing
the ¯ow dynamics; the second pair is T and Y1 representing the ¯ow thermodynamics. An
iterate of the ¯ow dynamics pair is done in two steps: First, Eqs. (61) and (62) are used to
calculate u with the very small p 0 being neglected. Second, Eq. (18) is used to calculate p 0

whose value relative to pe is smaller than the numerical error tolerance. The second pair of
variables, �T, Y1� is obtained by iteratively solving Eqs. (19) and (20) as a pair of coupled
convection±di�usion equations. The di�erence equations for the time dependent vectors of cell
center �T, Y1� values are thus in the form of coupled matrix equations. To satisfy the jump
conditions at the drop boundary, we modify the matrix elements that are related to cells at the
drop boundary according to Eqs. (35)±(40) and the ®lm layer equations.
During any particular time step, an iterate is accomplished by a two stage process: ®rst,

there is a partial explicit time step predictor, followed by an implicit time step corrector. The
convection±di�usion equations are discretized using a three-point spatial stencil. and this yields
di�erence equations in the form of tridiagonal matrices including the T and Y1 cross-coupling
matrices. Since these cross-coupling matrices are second order in time di�erences, the implicit
time step is calculated to ®rst order using the Thomas algorithm for inverting tridiagonal
matrices (Anderson et al., 1984), followed by iteration through matrix multiplications to obtain
a second order time step. Because the time constant associated with Eq. (30) is very small, the
equations are very sti�, and therefore during each time step iterate a separate iteration is
necessary to calculate the boundary conditions as explained above. These conditions are then
used in the radial velocity calculations and in the formation of the �T, Y1� vector pair matrices.
During each simulation, the time step is adjusted dynamically based upon the previous time
step convergence.

5. Results

The present simulations are performed for an n-heptane drop in nitrogen because it is the set
of binary substances which is best documented experimentally. The equations of state have
been calculated according to the procedure described in Harstad et al. (1997) and the
calculation of properties has been described in Harstad and Bellan (1998). The purpose of
these simulations is ®rst to validate the model, and then to explore parametric regimes of
practical interest that are unavailable experimentally such as the small size drops typical of gas
turbine combustors and Diesel engines. Since all droplet data spanning subcritical to
supercritical regimes is for large drops, our ®rst set of simulations is for these conditions. The
only data that can be used for comparisons is that obtained under evaporative rather than
burning conditions, since in the last case the ¯ame temperature that acts as the far ®eld
boundary is unknown. Furthermore, as shown below, it is only microgravity data that can be
considered valid for these comparisons because normal gravity data has unavoidable convective
e�ects that are not modeled here. Additionally, since all high pressure microgravity drop
evaporation experiments were performed with suspended drops, even these data are clearly not
totally equivalent to our simulation results which are obtained for a free ¯oating drop.
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In all calculations presented here aaj � 1 for all j's according to the data of Paul (1962).

5.1. Model validation

To our knowledge, microgravity obtained data with C7H16 drops evaporating in N2 were
reported only by Sato (1993) and Nomura et al. (1996). In their experiments 0.7±1 mm drops
were suspended from a ®ber of 200 mm diameter whose in¯uence was not assessed; however,
recent calculations (see Morin, 1999) indicate that the in¯uence of the ®ber increases with
increasing temperature and pressure. For example, it was found that for drops of 1 mm
diameter at 300 K the heat ¯ux from the ®ber may be07 and 10% of the heat provided by the
surrounding nitrogen at 473 K and 0.1 MPa, and 673 K and 1 MPa, respectively. Also not
reported by Nomura et al. (1996) is the ratio of the measured gravity by the normal gravity
during the experiments as a function of time; only average microgravity ratios of 10ÿ2 for
parabolic ¯ights and 10ÿ3 for drop towers are cited. The transient value of the microgravity
ratio might be important to ascertain when comparing numerical results and data since Vieille
et al. (1996) have shown that if the magnitude of this ratio is in the range 10ÿ4±10ÿ2,
buoyancy e�ects are still identi®able in the evaporation constant.
The C7H16 drop evaporation experiments of Chauveau et al. (1993) were conducted only in

normal gravity, whereas their reported microgravity experiments were of burning drops.
Therefore, our comparison focuses on the data of Sato (1993) and Nomura et al. (1996) while
also considering for reference (see Table 2) the more recent normal gravity data of Morin et al.
(1999) for 1±1.5 mm drops, instead of that of Chauveau et al. (1993).

Table 2

Maximum regression rate of the maximum density gradient location, K in mm2/s, obtained from the current model
(ap), Nomura et al.'s (Nomura et al., 1996) microgravity experimental data (Nom), Sato's (Sato, 1993) microgravity
and normal gravity experimental data (Sat), and Morin et al.'s (Morin et al., 1999) normal gravity data (Mor)a

pe (MPa) Te (K) K (mg) K (normal g) Kap Kap/Kdata (mg)

0.1 470 0.116 (Nom) 0.22 (Mor) 0.135 1.16

0.1 655 0.306 (Nom) 0.45 (Mor) 0.280 0.92
0.1 745 0.390 (Nom) 0.56 (Mor) 0.350 0.90
0.5 470 0.117 (Nom) ± 0.135 1.15

0.5 655 0.356 (Nom) ± 0.320 0.90
0.5 745 0.437 (Nom) ± 0.390 0.89
1.0 470 0.138 (Nom) ± 0.135 0.98

1.0 655 0.424 (Nom) ± 0.330 0.78
2.0 445 0.097 (Sat) 0.14 (Sat) 0.0935 0.97
2.0 452 0.096 (Nom) ± ± ±
2.0 655 0.475 (Nom) ± 0.360 0.76

2.0 745 0.4±1.7 (Nom) 0.450 ± ±
5.0 495 0.2±0.13 (Nom) ± 0.140 0.70±1.08

a The Nomura et al.'s and Morin et al.'s data were provided by the authors, and Sato's values were read on their
graph following the directions given in their paper. In the simulations T 0

d � 300 K and d 0 � 0:7 mm, while Nomura
et al.'s d 0 was 0.6±0.8 mm, Sato's was 1 mm, and Morin et al.'s was 1±1.5 mm.
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The simulations were performed for nominal initial conditions (superscript 0) matching the
experimental data: R0

d � 0:35 mm except for the comparison with Sato's (Sato, 1993) data
which was performed for R0

d � 0:5 mm, and T 0
d, b � 300 K. The far ®eld conditions are located

at R0
e � 4 mm where Te and pe are speci®ed consistent with those of the experiments and

Y 0
1e � 0: The ¯uid drop is initially composed of pure heptane �Tc � 540:3 K, pc � 2:76 MPa),

while the surrounding is nitrogen �Tc � 126:2 K, pc � 3:39 MPa); in order to avoid an initial
unphysical discontinuity, a minute amount of heptane exists initially in the drop surroundings,
its distribution vanishing with increasing r. For the same reason, although the ¯uid drop
temperature and outer ¯uid composition are assumed initially uniform, a set of computational
initial conditions (i.e. spatial pro®les of the variables) are calculated for each simulation by
satisfying the nominal initial conditions at the domain boundaries and the boundary conditions
at Rd: In practice, this is achieved by choosing target values for

ZY �
�

dY

dr

�
r�Rd

R0
d

�1ÿ er �
�
Y 0

e ÿ Y 0
ÿ
R0

d

�� and ZT �
�

dT

dr

�
r�Rd

R0
d

�1ÿ er �
�
T 0

e ÿ T 0
ÿ
R0

d

�� �65�

where er � R0
d=R

0
e � 1, and iterate on the values of ZY, ZT and the dependent variables at the

surface �Y 0
1�R0

d�, T 0�R0
d� and Fems� until convergence is achieved or until a minimal deviation

from the targets is obtained. For example, at p � 0:1 MPa we initially choose ZY � ZT � 1 in
anticipation of the well known (Williams, 1965) quasi-steady analytic solution, and the
iteration con®rms these values at convergence. Another example is that of a calculation
performed at p � 1 MPa where although the initial choice is still ZY � ZT � 1, the initial
conditions iterate converges with ZY � ZT � 0:88: As the initial pressure increases, ZY and ZT
depart further form unity. It is these calculated initial pro®les which appear in all ®gures as
those at t � 0 s, and that are used to continue the calculations for t > 0 s.
In all of the discussions below, `subcritical' and `supercritical' quali®cations will be used with

respect to the heptane critical point, and not with respect to the critical point of the mixture
which varies according to the local composition.

5.1.1. Determination of thermal di�usion factors from high temperature data
As discussed previously, values of aBK are poorly known for most substances, except at

atmospheric conditions where they can be calculated from kinetic theory. Since we are here
interested in calculations at considerably larger pressures, the question arises as how to
calculate aBK: For this purpose, the premise is that if it can be shown, for example, that aIK is
very small, in fact it may be considered negligible with respect to �aBK ÿ aIK� in Eq. (26) and
then aBK ' ÿah (see Eq. (48)). Since ah is calculated from thermodynamics, this would provide
an approximate value for aBK at each p for all �Y1, T � conditions where jaIK=a�j � 1 and a� �
max�Y1,T �jahj: The exact de®nition of a� may vary according to the needs of the calculation;
what is important is that a� represents in average the magnitude of ah in the thermodynamic
region of interest. A similar premise may be made regarding aBK: The purpose of these high
temperature data comparisons is to explore whether either premise is approximately correct.
Shown in Fig. 1a are �d=d0�2 plots from our simulations portraying Nomura et al.'s

(Nomura et al., 1996) experiments at high temperature (745 K) in the pressure range of 0.1±2
MPa. For consistency with optical measurements, the location of the drop boundary is de®ned
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Fig. 1. (a) High temperature comparisons. R0
d � 0:35 mm; R0

e � 4 mm, Y 0
e � 0 and T 0

d, b � 300 K. In the far ®eld Te

and pe are speci®ed as in the experiments. Simulations at Te = 745 K and pe: 0.1 MPa, aIK � 0:01 ÐÐ; 0.1 MPa,
aBK � 0:01 Ð�Ð; 0.5 MPa, aIK � 0:01 - - - -; 0.5 MPa, aBK � 0:01 - - � - -; 2 MPa ± � ±. Data: 741 K and 0.1 MPa
Q; 749 K and 0.5 MPa R; 746 K and 2 MPa T. (b) Contour plots of ah de®ned in Eq. (27) for p � 0:1 MPa. (c)

Contour plots of ah de®ned in Eq. (27) for p � 0:5 MPa.
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in the simulations as that of the maximum density gradient. In agreement with well known
theory (Williams, 1965), at 0.1 MPa the liquid/gas interface is found to be precisely that of
maximum density gradient. With increasing p the two locations still coincide for all simulations
in the range 0.1±10 MPa investigated in this work, but the density gradient, although still
substantial, decreases across the boundary as p increases.
All but two of our simulations were conducted with aIK � 0:01; the remaining simulations

were conducted with aBK � 0:01: Our 0.1 MPa results with aIK � 0:01 capture the linear part of
the 0.1 MPa data very well but display a somewhat earlier d 2-law behavior; it is unclear
whether the non-coinciding part of the data and simulations fall within the experimental error
since this error is not provided with the data. In contrast, the 0.1 MPa simulations with aBK �
0:01 capture the 0.1 MPa during the early, heating period, but departs substantially from the
data in the linear regime. This behavior is initially puzzling since limp40aBK�aKT and thus one
would expect that the low pressure behavior will be better rendered numerically when aBK is
speci®ed. Our interpretation of the results is that even at low pressure aBK is not constant or
small, and in fact is a function of T and Y1 that is better approximated by ÿah in the spatial
region of strong mass fraction and temperature gradients (i.e. near the drop boundary) where
the Soret and Dufour terms may be important. If this statement is correct, then it should not
be surprising that for small aIK the numerical simulations agree with the data since Eq. (34)
shows that aBK ' ÿah when jaIK=a�j � 1: To verify this conjecture, ah is plotted at 0.1 MPa as
a function of Y1 and T in Fig. 1b. It is clear that for aIK � 0:01, jaIK=a�jIO�10ÿ2�, therefore
justifying the premise.
Similarly, comparisons between the 0.5 MPa data and results from simulations with both

aBK and aIK speci®ed as 0.01 show clearly that the aBK � 0:01 results fall short of agreement
with the data, and in fact show a typically large increase in the evaporation time; this is typical
of results obtained with aBK � 0:01 at other pressures as well (see below). In contrast, the aIK �
0:01 results capture the nonlinear portion of the curve very well with a small discrepancy in the
total evaporation time. To show that the assumption jaIK=a�j � 1 holds for aIK � 0:01 at 0.5
MPa, ah is displayed in Fig. 1c; simple evaluations show that jaIK=ahjIO�10ÿ3�:
Simulations and data at 2 MPa (see Fig. 1a) agree only during the initial time, after which

the simulations display the expected smooth variation consistent with drop heating, whereas
the data exhibit two discontinuities that can be explained only by the presence of the
suspending ®ber. Calculated slopes of the linear part of the curves, called the evaporation
constant (Williams, 1965), K, are presented in Table 2 for comparison with the 0.1 and 0.5
MPa, aIK � 0:01 results. Despite the presence of the suspending ®ber in the experiments, there
is excellent agreement between simulations and data. A similar comparison cannot be
performed at 2 MPa since there is no evidence of linear behavior in the data.

5.1.2. Con®rmation of thermal di�usion factors from intermediate temperatures data
Displayed in Fig. 2a are p � 2 MPa comparisons of simulation results at 655 K for various

values of aIK, one simulation where aBK instead of aIK is prescribed, and Nomura et al.'s
(Nomura et al., 1996) data at 656 K. The numerical predictions are a very weak function of
aIK in the range ÿ0.6 to 0.6 and agree remarkably well with the data during the initial heat up
period of the drop. Eventually, the data shows a faster evaporation than our simulations,
although the lack of error bars in the data make it impossible to evaluate the extent of the
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disagreement. It is also di�cult to evaluate the in¯uence of the ®ber (during the experiment) on
the evaporation process. However, results with aBK � 0:01 clearly overestimate both the growth
of the drop during the initial heat up time and the drop evaporation time; these results are
consistent with those of Fig. 1a. Therefore, it is apparent that at 2 MPa, the approximation
jaIK=a�j � 1 must hold as well. This conjecture is substantiated by plots of ah displayed in
Fig. 2b. In fact, contour plots of ah at increasing pressure show that the approximation
jaIK=a�j � 1 becomes increasingly justi®ed for aIKIO�10ÿ1�:
Additional comparisons between numerical predictions and data is portrayed in Fig. 3 where

Fig. 2. (a) Intermediary temperature comparisons at 2 MPa. R0
d � 0:35 mm; R0

e � 4 mm, Y 0
e � 0 and T 0

d, b � 300 K.
Simulations at 655 K; aIK � 0:01 ÐÐ; 0.3 - - -; ÿ0.3 ± � ± �; ÿ0.6 ± �� ±; 0.6 Ð Ð; aBK � 0:01 Ð*Ð Data at 656
K: Q. (b) Contour plots of ah de®ned in Eq. (27) for p � 2 MPa.
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comparisons are made in the range 0.1±2 MPa between simulations at 655 K with aIK � 0:01,
and data in the range 648±669 K. The initial heating time is again very well reproduced by the
simulations, except that the predictions at 0.1 MPa display again an earlier d 2-law behavior.
The evaporation time is very well reproduced at 0.1 MPa, and less well as the pressure
increases. Since it is di�cult to quantify the in¯uence of the suspending ®ber as the pressure
increases, we can qualify this comparison as very encouraging.
Table 2 includes comparisons of K for this intermediary temperature regime, and shows

excellent to good agreement between data and predictions.
This study indicates that the value of aIK=a� is indeed small and that aBK ' ÿah is correct.

The assumption made in all calculations presented below is that aIK has the same small value
determined at high temperatures regardless of the �p, T � conditions, and thus that aBK ' ÿah:
This assumption might not be entirely valid, as in general aIK is a function of both p and T.

Fig. 3. Intermediary temperature comparisons. R0
d � 0:35 mm; R0

e � 4 mm, Y 0
e � 0 and T 0

d, b � 300 K. Simulations

at 655 K: 0.1 MPa ÐÐ; 0.5 MPa - - - -; 1 MPa ± � ± �; 2 MPa Ð Ð. Data: 648 K and 0.1 MPa Q; 655 K and 0.5
MPa R; 669 K and 1 MPa T; 656 K and 2 MPa *.

Fig. 4. Low temperature comparisons. R0
d � 0:35 mm except at 445 K where R0

d � 0:5 mm; R0
e � 4 mm, Y 0

e � 0 and
T 0

d, b � 300 K. Simulations at 470 K: 0.1 MPa ÐÐ; 0.5 MPa - - -; 1 MPa ±�±�; at 445 K and 2 MPa Ð Ð; at 495

K and 5 MPa ±��±. Data: 471 K and 0.1 MPa Q; 468 K and 0.5 MPa R; 466 K and 1 MPa T; 445 K and 2 MPa
�; 452 K and 2 MPa Y; 493 K and 5 MPa ..
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This assumption and the fact that the data is from suspended drop experiments whereas our
calculations are for free drops, might explain the 15±20% discrepancies (see below and Table 2)
between data and results from simulations.

5.1.3. Comparison with data at low temperatures
The low temperature data of Nomura et al. (1996) and Sato (1993) (Sato's data was

approximated from his ®gure) is shown in Fig. 4 along with our numerical predictions at 445,
470 and 495 K using aIK � 0:01: The temperature range for Nomura et al.'s (Nomura et al.,
1996) data is 466±493 K whereas Sato's (Sato, 1993) data was obtained at 445 K; the data in
Nomura et al. (1996) is in the 0.1±5 MPa range, whereas that of Sato (1993) is at 2 MPa. The
comparisons are very good at low p and deteriorate as p increases. The predictions and data
(Nomura et al., 1996) agree remarkably well at 0.1 and 0.5 MPa, whereas at 1 MPa the
evaporation time is slightly overpredicted by the simulations. Nevertheless, the calculated and
measured evaporation constants (Table 2) show very good agreement at all three pressures.
The 2 MPa numerical results approximate the d 2 experimental variation (Sato, 1993) fairly
well, and the agreement in the value of K (Table 2) is excellent. At p � 5 MPa, our simulation
of a free drop shows an increased heating time, whereas the suspended drop in the experiment
shows a decreased heating time with respect to the 0.1 MPa case. The di�erence between the
experimental conditions and those of the simulations explains the disagreement in the heat up
time, although the rate of regression of the largest gradient location is surprisingly well
predicted. Since at 5 MPa the conditions may be supercritical at the drop boundary, there may
be no evaporation and the concept of evaporation constant may be irrelevant, although
comparisons between the rates of regression are still meaningful.

5.2. Small drops at high ambient temperatures

The above comparison between numerical predictions and data shows that the theory is
capable of capturing the physics of ¯uid drop behavior over a substantial range of
temperatures and pressures in both the subcritical and supercritical regimes. These comparisons
were conducted for the relatively large drops that can be handled experimentally, although the
regime of practical interest is that of smaller drops (for which experiments are not available).
To address this regime of practical interest, simulations relevant to Diesel engine and gas
turbine engine drop sizes and �p, T� conditions were performed with R0

d � 60� 10ÿ4 cm,
T 0

d, b � 325 K (the ¯uid drop temperature is assumed initially uniform), R0
e � 0:05 cm, T 0

e �
800 K, Y 0

e � 0, and pe being either constant or speci®ed as a function of t (see Fig. 5a). These
simulations are listed in Table 3.

5.2.1. Temporal variation

5.2.1.1. Constant pressure simulations. The temporal variation of signi®cant variables is illus-
trated in Fig. 5 and the lines/symbols used in the ®gures are those in Table 3. For these small
drops, the 0.1 MPa behavior is exactly that predicted by the classical theory (Williams, 1965):
Fig. 5b shows the totally linear behavior of d 2 as the drop heats up very rapidly. As p
increases, the heating time occupies a larger time of the drop lifetime (de®ned as the time
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Fig. 5. Temporal variations from simulations with R0
d � 6� 10ÿ2 mm, T 0

d, b � 325 K, R0
e � 0:5 mm, T 0

e � 800 K,
and Y 0

e � 0: The legend is shown in Table 3. (a) pe, (b) �d=d0� 2, (c) Tb, (d) Fems, (e) Y1bÿ, (f) Y1b�, and (g) K.
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during which one can identify a large density gradient) and the variation of d 2 is no longer in-
itially linear. Eventually, at large pressures the drop size (as measured by the location of the
largest density gradient) initially increases before starting to decrease. At high p the linear vari-
ation is no longer obtained even after the initial heat up time.
The increasing nonmonotonicity of the temporal variation of d 2 with increasing pressure

was experimentally observed by Nomura et al. (1996) and Chauveau et al. (1993) for n-heptane
in air, although the last authors attributed it to the in¯uence of the drop suspension ®ber. Just
as in the present simulations, Nomura et al. (1996) observed that the ratio of the heat-up time
to the drop lifetime (de®ned there as the value of the abscissa at the intersection with the d 2

curve) increases with increasing p.

The evolution of the boundary temperature (Fig. 5c) shows a segregation into the lower
temperatures achieved at subcritical conditions whose maximum is limited by the boiling point
at the particular pressure, and the higher temperatures achieved at supercritical conditions
whose maximum is limited only by the far ®eld value. The emission rate displayed in Fig. 5d
has a true physical meaning only for the subcritical simulations where it represents the
evaporation rate. The fact that the Fems values become eventually similar does not invalidate
the previous statement that Fems � rDeff=Drÿ at supercritical conditions and that Fems �
rDeff=Drÿ at strong evaporative subcritical conditions; what changes substantially as one
transitions from one regime to another is the value of rDeff=Drÿ, not Fems: The very large
values of Fems towards the end of each simulation are an artifact of the small drop size.

Figs. 5e and f illustrate the heptane mass fractions in the drop side of the boundary and on
the pure nitrogen side of the boundary, respectively. At 0.1 MPa the drop composition remains
pure heptane throughout the drop lifetime. As the pressure increases, solubility e�ects become
increasingly important and nitrogen penetrates the ¯uid drop, thus explaining the decreasing
value of the heptane mass fraction on the inner part of the drop boundary, Y1bÿ � Y1�Rÿd �: At
low pressures, Y1bÿ attains an asymptotic behavior that is not seen for p > 8 MPa. The 0.1
MPa behavior displayed by the heptane mass fraction on the outer part of the drop boundary,
Y1b� � Y1�R�d �, is that of the classical (Williams, 1965) quasi-steady behavior at atmospheric p:

Table 3
List of simulations conducted with drops of 60 mm radius. The far ®eld temperature was 800 K and constant, and

the initial drop temperature was 325 K

pe (MPa) Lines/Symbols

0.1 ÐÐÐÐÐÐÐ
0.5 Ð*Ð*Ð*Ð

1.0 ÐTÐTÐTÐ
2.0 - - - - - - - - - - - -
4.0 ± � ± � ± � ± � ± � ± �
5.0 ÐQÐQÐQÐ
8.0 Ð Ð Ð Ð Ð
10.0 ÐRÐRÐRÐ
Transient ± �� ± �� ± �� ± ��
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after a very short and slight nonuniformity Y1b� remains constant throughout the drop
lifetime. As p increases but remains subcritical, the initial unsteadiness relaxes to an
approximately asymptotic state. In contrast, as p further increases and the supercritical regime
is reached, even after the relaxation of the initial transient, Y1b� continues to increase without
reaching an asymptote. These results show that laminar di�usional mixing at supercritical
conditions is more e�ective than quiescent evaporation at all subcritical pressures (see
explanation below).
To explore the variation of K with p, its variation is presented in Fig. 5g. It is clear from the

plots that it is only at 0.1 MPa that K can be considered to be truly a constant (after the short
initial transient behavior). In the remaining cases, the transients persist during an important
part of the drop lifetime. Even at subcritical pressures, with increasing pressure the asymptotic
behavior becomes increasingly problematic. At supercritical pressures, K becomes the rate of
regression of the maximum density gradient boundary, and persists to increase with time.

5.2.1.2. Transient pressure simulation. The results for a transient pressure simulation are pre-
sented also in Fig. 5 for comparison with the constant pressure simulations. The imposed press-
ure on the drop yields initially subcritical conditions (0.5 MPa) and eventually supercritical
conditions (4 MPa). Such calculations crossing the critical point are problematic if the focus is
on the transcritical behavior because the critical point is a thermodynamic singularity: Cp

becomes in®nite; aD, the latent heat and the surface tension become null; etc. It is well known
that one of the important characteristics of the critical point is that correlation lengths become
very large and the integral conservation equations may not be necessarily convertible to a
di�erential form; this implies that the Navier±Stokes equations may not be valid in the critical/
transcritical regime. However, if the emphasis of a calculation is not necessarily on the critical/
transcritical behavior, one may still use this formalism and refrain from giving too much cre-
dence to the results around the thermodynamic singularity. It should be additionally realized
that calculations encompassing the critical point will always be numerically di�cult, and that
their convergence will be sensitive to the initial conditions. Since we did not make any special
provisions for the initial conditions of this simulation, the fact that the calculation was success-
fully performed can be attributed to the robustness of the model.
Given these warnings, our results show that the drop displays a behavior intermediate

between the sub- and supercritical one, and that Y1b� (Fig. 5f) is somewhat reduced with
respect to that of the drop which was constantly exposed at the highest pressure of the
transient simulation.

5.2.2. Spatial variation at di�erent pressures

5.2.2.1. Comparisons of sub- versus supercritical variation. The spatial variations of T, r, Y, the
compression factor Z � pv=�RuT �, aD, the traditional Lewis number Le � l=�nCpD� and Leeff

are presented in Fig. 6(a)±(g) for the 0.1 MPa simulation and equivalent results are shown in
Fig. 7(a)±(g) for the 5 MPa case.
As discussed above, one of the major di�erences between sub- and supercritical behavior is

evidenced by the drop temperature variation which is negligible at 0.1 MPa, being limited by
the boiling point at that pressure; in contrast the drop temperature continuously increases at 5
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Fig. 6. Spatial variations of (a) T, (b) r, (c) Y, (d) Z, (e) aD, (f) Le, and (g) Leeff for R
0
d � 6� 10ÿ2 mm, T 0

d, b � 325

K, R0
e � 0:5 mm, T 0

e � 800 K, Y 0
e � 0 and pe � 0:1 MPa. Legend for t is in s.
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Fig. 7. Spatial variations of (a) T, (b) r, (c) Y1, (d) Z, (e) aD, (f) Le, and (g) Leeff for R0
d � 6� 10ÿ2 mm,

T 0
d,b � 325 K, R0

e � 0:5 mm, T 0
e � 800 K, Y 0

e � 0 and pe � 5 MPa. Legend for t is in s.
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MPa. While the heptane mass fraction remains unity within the drop at 0.1 MPa and the drop
surface regresses, a small amount of nitrogen dissolves into the drop at 5 MPa and the internal
drop heptane mass fraction is reduced from its initial value of 1. Moreover, while at any given
location in the vicinity of the drop original boundary the heptane mass fraction decreases with
time at 0.1 MPa, it increases with time at 5 MPa. This opposite trend is the result of the
di�erence between the vigorous evaporation which continuously enlarges the drop sphere of
in¯uence, and thus dilutes the amount of heptane, and the slow supercritical di�usion process
which slightly contracts temporarily the sphere of in¯uence before an asymptotic recovery of
its original value. This change in Re is also a�ecting the density which is substantially larger
outside of the drop at 5 MPa.
The compression factor, Z, and mass di�usion factor, aD, are thermodynamic quantities

that characterize departures from the perfect gas behavior and from ideal mixtures,
respectively; for a perfect gas Z � 1 and for an ideal mixture aD � 1: As expected, at 0.1
MPa the compression factor is unity in the gas, and O�10ÿ3� in the drop which is a
value characterizing liquids. In contrast, at 5 MPa the compression factor decreases from
the unity value outside of the drop to 00.25 inside the drop showing that the drop is no
longer a liquid despite its liquid-like density. At 0.1 MPa, the mass di�usion factor is
unity everywhere except at and very close to the drop surface where there is a mixture of
heptane and nitrogen. In contrast, at 5 MPa there are departures from the unity value in
the entire ®eld, and these departures increase with time as nitrogen continues to dissolve
in the drop and the mass fraction of heptane increases in the initially pure nitrogen
region (as discussed above).
The variations of Le and Leeff are displayed in Figs. 6f and g for the 0.1 MPa

simulations and Figs. 7f and g for the 0.5 MPa predictions. At 0.1 MPa, Le and Leeff are
identical inside the drop showing that indeed Leeff reaches the correct limit for a single
substance, a uniform temperature, and atmospheric conditions. However, even at
atmospheric conditions one observes di�erences from 50% to a factor of 2±3 between Le
and Leeff in regions where there is a mixture of substances and there are temperature
gradients. At 5 MPa these di�erences increase even further: Le and Leeff are initially
identical, but Le decreases whereas Leeff increases with time from the initial condition.
Mistakenly, the Le values inside the drop are typical of an ideal gas �LeR1�, whereas Leeff

correctly indicates the existence of a dense gas �Leeff > 1�: The incorrect (correct) Le �Leeff�
predictions have both a fundamental and a practical signi®cance, in that engineering
estimates of combustor dimensions are often based upon calculations of nondimensional
numbers such as the Lewis number. The present simulations show that classical evaluations
of the Lewis number may give erroneous results.

5.2.2.2. Spatial pro®les comparisons. Presented in Fig. 8(a)±(d) are spatial variations of T, Y1, r,
and aD at 3 � 10ÿ2 s, for 0.1, 2, 4, 8 MPa and the transient run; results obtained at 10 MPa
are not illustrated because of their similarity with those at 8 MPa. The selected time is such
that the leftover drop mass is small, and the choice of the pressures is such that the atmos-
pheric pressure is retained as a reference, the critical point is `framed' by two pressures, the
pressure is increased by a constant ratio, and the entire range is relevant to both gas turbine
and Diesel engines. Parallel plots are presented in Fig. 9(a)±(d) at the output time which is clo-
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sest to the half-mass time (for the selected times, the maximum error with respect to the exact
half-mass is 2%) to explore the possibility of pro®le similarity at the same stage in the drop
lifetime. Clearly, such a similarity does not exist and it can be concluded that it is not only the
time scales that change as the pressure increases from subcritical to supercritical, but it is the
general behavior of the drop that is di�erent.
Although the half mass time is approximately the same for most illustrated simulations (for

0.1, 2, 4, 8 MPa and the transient case it occurs at respectively 1.25� 10ÿ2, 1.75� 10ÿ2, 1.75�
10ÿ2, 1.75 � 10ÿ2 and 1.6 � 10ÿ2 s), at a ®xed time close to the drop disappearance the
maximum gradient region is variable whereas at the half mass time it is more similar. We
conclude that pressure speci®c di�erentiation in size occurs when the drop becomes relatively
small, and therefore data must be obtained close to the time of drop disappearance in order to
identify distinctive pressure dependent behavior. In contrast to r which is more distinctive as a
function of p at larger times, T displays a pressure speci®c behavior at all times; therefore, a
temperature measurement will always be a good relative pressure indicator. The magnitude
variation of aD, which is a good indicator of (di�usion/convective) mixing, displays much more
di�erentiation close to the drop disappearance than at the half mass time, and the low values

Fig. 8. Spatial variations at 3 � 10ÿ2 s of (a) T, (b) r, (c) Y1 and (d) aD for R0
d � 6� 10ÿ2 mm, T 0

d, b � 325 K,

R0
e � 0:5 mm, T 0

e � 800 K, Y 0
e � 0 and pe � 0:1 MPa ÐÐ, 2 MPa - - - -, 4 MPa ± � ± �, 8 MPa Ð Ð, MPa and

transient ± �� ±.
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attained at 8 MPa show that the drop might be close to its critical point for the particular
composition at that location.

6. Conclusions

A model of ¯uid behavior under both sub- and supercritical thermodynamic conditions has
been discussed with particular emphasis on the di�erent physics according to the initial
conditions with respect to the drop substance critical point. The model has been exercised for a
¯uid drop for which data are available for model validation. Initially the drop is colder than its
surroundings whose far ®eld conditions are prescribed. In the subcritical regime and for large
emission rates from the drop, there exists a ®lm layer in the inner part of the drop surface and
the solution of the equations has a convective±di�usive character. In the supercritical regime,
there is no material surface to follow, and this introduces an indeterminacy in the boundary
conditions. To resolve this indeterminacy one must follow an arbitrary boundary of interest
which is chosen here to be that of the initial ¯uid drop. The solution has then a pure di�usive

Fig. 9. Half-mass spatial variations of (a) T, (b) r, (c) Y1 and (d) aD for R0
d � 6� 10ÿ2 mm, T 0

d, b � 325 K,
R0

e � 0:5 mm, T 0
e � 800 K, Y 0

e � 0 and pe � 0:1 MPa ÐÐ, 2 MPa - - - -, 4 MPa ± � ± �, 8 MPa Ð Ð, MPa and
transient ± �� ±.
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character, and from this solution we calculate the location of the highest density gradient

which we identify with the optically observable ¯uid drop.

Experimental validation of the model requires that substance properties be accurately

speci®ed, and we therefore analyzed the de®nitions of di�erent transport properties. Our

analysis shows that both the Irwing±Kirkwood and the Bearman±Kirkwood de®ned transport

parameters may di�er from the measurable values, and we de®ne transport parameters that

correctly converge to the kinetic theory values in the low pressure limit.

The model was exercised for a heptane drop in nitrogen because of the existing data

available for comparison. Simulations obtained with this model were validated with

microgravity experimental data for large drops over a wide range of temperatures and

pressures. The large temperature data were used to determine the value of the thermal di�usion

factor and further validations were conducted with this ®xed value. The agreement between

predictions and d 2 data is excellent at atmospheric pressure and becomes fair at supercritical

pressure, whereas the rate of regression of the point of maximum density gradient is

remarkably well predicted at all pressures. Discrepancies between numerical results and data

are attributed to both the in¯uence of the suspending ®ber in the experiments which a�ects

heat transfer, and to the insu�cient level of microgravity which a�ects buoyancy, as well as to

uncertainties in the values of the thermal di�usion factor. The numerical predictions show that

the traditional d 2-law is obeyed only in the subcritical regime. As the pressure is increased, d 2

becomes nonmonotonic with time, with a slope whose magnitude increases as a function of

time. Thus, we initially identify a heating period during which the drop size may increase,

followed by a period during which the size is continuously reduced. The duration of the heat-

up period increases with far ®eld pressure.

Numerical predictions were also made for the small drops of practical interest for which

data is not available. In the simulations, the heptane drops were initially at 325 K whereas the

surrounding nitrogen was at 800 K. Results were obtained from simulations at constant far

®eld pressure in the range 0.1±10 MPa, and for a far ®eld transient pressure crossing the

critical point. Comparisons between subcritical and supercritical simulations show that the

drop temperature increases only slightly at atmospheric conditions and remains constant

thereafter (being constrained by the boiling point), whereas it continuously increases at

supercritical conditions. This, and the di�erence between vigorous evaporation coupled to

strong convection at atmospheric conditions and slow di�usion at supercritical conditions

explains the larger heptane mass fraction near the drop boundary at supercritical conditions.

Despite the liquid like density, the ¯uid drop under supercritical conditions has properties

similar to those of a dense gas. It is shown that the classically calculated Lewis number cannot

di�erentiate between liquid and dense gas, but an e�ective Lewis number previously derived

correctly predicts the characteristics of supercritical behavior. Results obtained from

simulations with a transient far ®eld pressure crossing the heptane critical point show that the

drop combines characteristics of both subcritical and supercritical behavior. It is also indicated

that transcritical results should be interpreted with caution since due to the very large

correlation lengths, it is doubtful that the Navier±Stokes equations hold in that regime.
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